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In [1], molecular design problems are addressed via a continuous formulation. The idea is to allow fractional values of what
in the natural formulation of the problem are integer values. In the alloy optimization context [2], this means we allow frac-
tional occupation of lattice sites. For a binary alloy AcB1�c (the composition c 2 ½0;1� specifies the proportion of A versus B
atoms in the system), the identity of the ‘‘atom” at each of N lattice sites is represented by a coefficient xi 2 ½�1;1� giving
the proportion of atom A ðxi ¼ �1Þ versus atom B ðxi ¼ 1Þ at that site. Then, given a fixed alloy supercell, atomic configura-
tions are represented by real vectors x, and properties of a material can be expressed as functions f ðxÞ. Now the gradient rf
with elements @f=@xiðxÞ exists, so we can hope to design materials by solving the continuous, bound-constrained problem
minxf ðxÞ s.t. xi 2 ½�1;1�. In integer programming, such a formulation is called a relaxation [3]. In mechanics this approach
is known as topology optimization [4]. In the alloy context we call it the virtual crystal (VC) [5] formulation. Here we elucidate
several key properties of this approach. In particular:

(1) Because the continuous formulation allows gradients to be utilized, it is a vast improvement over a discrete search
algorithm where it is applicable.

(2) For the method to succeed without imposing more than bound constraints, the extrema of the continuous problem must
lie close to extrema of the discrete problem.

(3) Attempts to impose physicality as a constraint will not succeed; we always find the closest feasible point to the bound-
constrained extremum.

(4) Imposing a composition constraint is problematic; in fact, for any objective function having the symmetry of an under-
lying lattice, there is always an extremum at exactly the most unphysical point.

For our work in electronic structure optimization, we make use of the following: for an electronic state �with wave func-
tion w that is a solution to the Schrödinger equation Hw ¼ �w, where H ¼ � �h2

2mr
2 þ VðrÞ, we have the explicit formula
. All rights reserved.
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Fig. 1. Scaling of objective function evaluations versus system size (number of atoms) for composition-constrained band gap maximization using a genetic
algorithm (GA) and gradient-based constrained optimization method (SQP).
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@�=@xi ¼
Z

w�ðrÞ @VðrÞ
@xi

wðrÞdr: ð1Þ
This result is the Hellman–Feyman theorem [6], and it allows us to efficiently calculate rf for alloy electronic structure
problems.

1. Fig. 1 illustrates why we would want to work with the relaxed problem, even though it introduces possibly unphysical
solutions. Shown is a scaling study of a one-dimensional band gap maximization comparing the objective function eval-
uations necessary with sequential quadratic programming and a genetic algorithm, as a function of the system size. Gra-
dient-based search is much faster.

2. In [1], no constraints other than that xi 2 ½�1;1� are imposed, and it would appear that an extremely difficult combina-
torial problem has been rendered trivial. Closer examination reveals, however, that success hinges on the fact that fortu-
itously, the continuous objective function has an extremum near a physically realizable point. This requirement on the
objective function is the key limitation of the method as stated so far; in order to overcome it, we must impose additional
constraints.

3. In order to be sure we find structures that are physically realizable, our solution must satisfy the constraint of physicality
gðxÞ ¼ x2

i � 1 ¼ 0 for all i. But, in fact, we can prove that no matter how we impose the constraint (e.g. gradually imposing
it during the search), the method will suffer from the fundamental problem that the closest feasible point to the bound-con-
strained minimizer will always be found. Penalty terms added to f to enforce the constraint have the effect of pushing the
solution toward the closest feasible point. The dynamics of the optimization are governed completely by the location of
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Illustration of the essential problem with imposing the physicality constraint. The solid line is the objective function f ðxÞ. The dotted line close to it is
small penalty for violating physicality. Increasing the penalty introduces an increasingly large ‘‘hump” in successive functions so that minimizers are

lly pushed back to x0 ¼ 1.
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the bound-constrained minimum, with no regard to the objective function value at the feasible (i.e. physically realizable)
points. Fig. 2 illustrates the problem in one dimension. In this case, starting from x0 ¼ 1, the minimizer of the uncon-
strained problem is x ¼ 0:1. After that, increase in the penalty only drives successive minimizers to the right, until we
end up where we began.

4. Another important constraint (e.g. for purposes of lattice matching) is the composition constraint gðxÞ ¼
PN

i¼1xi � ctot ¼ 0,
where ctot ¼ 2Nðc � 0:5Þ, by which we force the overall alloy composition to remain fixed. However, consideration of the
composition constraint further restricts application of VC optimization: Introducing the constraint via a Lagrange multi-
plier k, the first order necessary condition [7] for a constrained optimum is thatrf ¼ krg for some k. Now, the gradient of
the composition constraint isrg ¼ ð1 � � �1ÞT . So we are at a constrained extremum if all the partial derivatives of f are the
same. This occurs if xi ¼ xj for all i; j, because at this point the symmetry of f on the crystal lattice implies that @f

@xi
¼ @f

@xj
for

all i; j. Thus for a given composition, there is an extremum at the most unphysical part of the VC coefficient domain. Taken
together with the case against imposing physicality, this is another serious blow to the VC optimization approach. On the
one hand we have seen that we cannot successfully impose physicality, but here we see that in fact for every composition
there is an extremum precisely at the most unphysical point, suggesting that without such an imposition we are likely to
find nothing but unphysical points.

In summary, we have discovered the following about VC optimization: For just the appropriate objective function f, it is a
powerful approach. However, one cannot use it for problems requiring the imposition of physicality as a constraint. And con-
sideration of the composition constraint suggests an additional reason to impose physicality. How, then, do we profitably
incorporate this continuous formulation into the tools of the computational physicist? We have at least two specific ideas,
which are under active investigation: First, following the approach of topology optimization, it is possible that an appropri-
ate nonlinear interpolation of the underlying atomic potentials will result in an f ðxÞ that has more desirable characteristics;
in particular, one for which the bound-constrained extrema are nearly physical. Second, it is possible that the relaxation pre-
sented here could enter productively into a heuristic branch and bound procedure in which the continuous formulation pro-
vides (possibly unfeasible) lower bounds, while heuristic search supplies (feasible) upper bounds. At present, however,
reliable and effective use of the power of gradient information made available by the VC representation awaits the results
of these further studies.
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